欧美日本道一区二区三区

首頁 > 中小學頻道 > 中小學教育 > 詳細內容

初中數學三角形、四邊形、圓輔助線的添加方法

  一.三角形中常見輔助線的添加

欧美日本道一区二区三区  1. 與角平分線有關的

欧美日本道一区二区三区  (1)可向兩邊作垂線;

欧美日本道一区二区三区  (2)可作平行線,構造等腰三角形;

  (3)在角的兩邊截取相等的線段,構造全等三角形。

欧美日本道一区二区三区  2. 與線段長度相關的

欧美日本道一区二区三区  (1)截長:證明某兩條線段的和或差等于第三條線段時,經常在較長的線段上截取一段,使得它和其中的一條相等,再利用全等或相似證明余下的等于另一條線段即可;

  (2)補短:證明某兩條線段的和或差等于第三條線段時,也可以在較短的線段上延長一段,使得延長的部分等于另外一條較短的線段,再利用全等或相似證明延長后的線段等于那一條長線段即可;

欧美日本道一区二区三区  (3)倍長中線:題目中如果出現了三角形的中線,方法是將中線延長一倍,再將端點連結,便可得到全等三角形;

欧美日本道一区二区三区  (4)遇到中點,考慮中位線或等腰等邊中的三線合一。

  3. 與等腰等邊三角形相關的

  (1)考慮三線合一;

  (2)旋轉一定的度數,構造全都三角形,等腰一般旋轉頂角的度數,等邊旋轉60°。

  二.四邊形中常見輔助線的添加

  1. 和平行四邊形有關的輔助線作法

欧美日本道一区二区三区  平行四邊形是最常見的特殊四邊形之一,它有許多可以利用性質,為了利用這些性質往往需要添加輔助線構造平行四邊形。

  (1)利用一組對邊平行且相等構造平行四邊形;

  (2)利用兩組對邊平行構造平行四邊形;

  (3)利用對角線互相平分構造平行四邊形。

  2. 與矩形有關的輔助線作法

欧美日本道一区二区三区  (1)計算型題,一般通過作輔助線構造直角三角形借助勾股定理解決問題。

  (2)證明或探索題,一般連結矩形的對角線借助對角線相等這一性質解決問題。和矩形有關的試題的輔助線的作法較少。

欧美日本道一区二区三区  3. 和菱形有關的輔助線的作法

欧美日本道一区二区三区  和菱形有關的輔助線的作法主要是連接菱形的對角線,借助菱形的判定定理或性質定定理解決問題。

  (1)作菱形的高;

  (2)連結菱形的對角線。

欧美日本道一区二区三区  4. 與正方形有關輔助線的作法

  正方形是一種完美的幾何圖形,它既是軸對稱圖形,又是中心對稱圖形,有關正方形的試題較多。解決正方形的問題有時需要作輔助線,作正方形對角線是解決正方形問題的常用輔助線。

  5. 與梯形有關的輔助線的作法

  和梯形有關的輔助線的作法是較多的 ,主要涉及以下幾種類型:

  (1)作一腰的平行線構造平行四邊形和特殊三角形;

  (2)作梯形的高,構造矩形和直角三角形;

欧美日本道一区二区三区  (3)作一對角線的平行線,構造直角三角形和平行四邊形;

  (4)延長兩腰構成三角形;

  (5)作兩腰的平行線等。

  三.圓中常見輔助線的添加

  1. 遇到弦時(解決有關弦的問題時)

  常常添加弦心距,或者作垂直于弦的半徑(或直徑)或再連結過弦的端點的半徑。

  作用:① 利用垂徑定理;② 利用圓心角及其所對的弧、弦和弦心距之間的關系;③ 利用弦的一半、弦心距和半徑組成直角三角形,根據勾股定理求有關量。

  2. 遇到有直徑時

  常常添加(畫)直徑所對的圓周角

欧美日本道一区二区三区  作用:利用圓周角的性質得到直角或直角三角形

  3. 遇到90度的圓周角時

  常常連結兩條弦沒有公共點的另一端點

  作用:利用圓周角的性質,可得到直徑

  4. 遇到弦時

  常常連結圓心和弦的兩個端點,構成等腰三角形,還可連結圓周上一點和弦的兩個端點。

欧美日本道一区二区三区  作用:①可得等腰三角形;②據圓周角的性質可得相等的圓周角。

欧美日本道一区二区三区  5. 遇到有切線時

  常常添加過切點的半徑(連結圓心和切點);

  作用:利用切線的性質定理可得OA⊥AB,得到直角或直角三角形。

欧美日本道一区二区三区  常常添加連結圓上一點和切點;

  作用:可構成弦切角,從而利用弦切角定理。

欧美日本道一区二区三区  6. 遇到證明某一直線是圓的切線時

  (1) 若直線和圓的公共點還未確定,則常過圓心作直線的垂線段。作用:若OA=r,則l為切線。

欧美日本道一区二区三区  (2) 若直線過圓上的某一點,則連結這點和圓心(即作半徑)作用:只需證OA⊥l,則l為切線。

  (3) 有遇到圓上或圓外一點作圓的切線。

  7. 遇到兩相交切線時(切線長)

欧美日本道一区二区三区  常常連結切點和圓心、連結圓心和圓外的一點、連結兩切點。

  作用:據切線長及其它性質,可得到

欧美日本道一区二区三区  ① 角、線段的等量關系 ② 垂直關系 ③ 全等、相似三角形

  8. 遇到三角形的內切圓時

欧美日本道一区二区三区  連結內心到各三角形頂點,或過內心作三角形各邊的垂線段。作用:利用內心的性質,可得

  ① 內心到三角形三個頂點的連線是三角形的角平分線;

  ② 內心到三角形三條邊的距離相等。

  9. 遇到三角形的外接圓時

  連結外心和各頂點

  作用:外心到三角形各頂點的距離相等。

欧美日本道一区二区三区  10. 遇到兩圓外離時

  (解決有關兩圓的外、內公切線的問題)常常作出過切點的半徑、連心線、平移公切線,或平移連心線。

欧美日本道一区二区三区  作用:①利用切線的性質;②利用解直角三角形的有關知識。

  11. 遇到兩圓相交時

  常常作公共弦、兩圓連心線、連結交點和圓心等。

  作用:①利用連心線的性質、解直角三角形有關知識;

欧美日本道一区二区三区  ② 利用圓內接四邊形的性質;

  ③ 利用兩圓公共的圓周的性質;④ 垂徑定理。

欧美日本道一区二区三区  12. 遇到兩圓相切時

  常常作連心線、公切線。

欧美日本道一区二区三区  作用:①利用連心線性質;②切線性質等。

  13. 遇到三個圓兩兩外切時

  常常作每兩個圓的連心線;作用:可利用連心線性質。

  14. 遇到四邊形對角互補時

  常常添加輔助圓。作用:以便利用圓的性質。

展開全文

入學資格咨詢

欧美日本道一区二区三区深度解析入學要求,提前備戰面談內容 ,學科分析歷年題型

HONF微信
推薦學校
活動日歷
大學列表